g2(x, y) -> x
g2(x, y) -> y
f3(0, 1, x) -> f3(s1(x), x, x)
f3(x, y, s1(z)) -> s1(f3(0, 1, z))
↳ QTRS
↳ DependencyPairsProof
g2(x, y) -> x
g2(x, y) -> y
f3(0, 1, x) -> f3(s1(x), x, x)
f3(x, y, s1(z)) -> s1(f3(0, 1, z))
F3(x, y, s1(z)) -> F3(0, 1, z)
F3(0, 1, x) -> F3(s1(x), x, x)
g2(x, y) -> x
g2(x, y) -> y
f3(0, 1, x) -> f3(s1(x), x, x)
f3(x, y, s1(z)) -> s1(f3(0, 1, z))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ QDPOrderProof
F3(x, y, s1(z)) -> F3(0, 1, z)
F3(0, 1, x) -> F3(s1(x), x, x)
g2(x, y) -> x
g2(x, y) -> y
f3(0, 1, x) -> f3(s1(x), x, x)
f3(x, y, s1(z)) -> s1(f3(0, 1, z))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
F3(x, y, s1(z)) -> F3(0, 1, z)
Used ordering: Polynomial interpretation [21]:
F3(0, 1, x) -> F3(s1(x), x, x)
POL(0) = 3
POL(1) = 0
POL(F3(x1, x2, x3)) = 2·x3
POL(s1(x1)) = 1 + x1
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ DependencyGraphProof
F3(0, 1, x) -> F3(s1(x), x, x)
g2(x, y) -> x
g2(x, y) -> y
f3(0, 1, x) -> f3(s1(x), x, x)
f3(x, y, s1(z)) -> s1(f3(0, 1, z))